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This paper examines one approach to promoting creative and flexible use of mathematical 

ideas within an interdisciplinary context in the primary curriculum, namely, through 

modelling. Three classes of fifth-grade children worked on a modelling problem 

(Australia’s settlement) situated within the curriculum domains of science and studies of 

society and environment. Reported here are the cycles of development displayed by one 

group of children as they worked the problem, together with the range of models created 

across the classes. Children developed mathematisation processes that extended beyond 

their regular curriculum, including identifying and prioritising key problem elements, 

exploring relationships among elements, quantifying qualitative data, ranking and 

aggregating data, and creating and working with weighted scores.  

 

Numerous researchers and employer groups have expressed concerns that schools are 

not giving adequate attention to the understandings and abilities that are needed for success 

beyond school. Research suggests that although professionals in mathematics-related fields 

draw upon their school learning, they do so in a flexible and creative manner, unlike the 

way in which they experienced mathematics in their school days (Gainsburg, 2006; Hall, 

1999; Hamilton, in press; Noss, Hoyles, & Pozzi, 2002; Zawojewski & McCarthy, 2007). 

Furthermore, this research has indicated that such professionals draw upon interdisciplinary 

knowledge in solving problems and communicating their findings. 

The challenge then is how to promote creative and flexible use of mathematical ideas 

within an interdisciplinary context where students solve substantive, authentic problems 

that address multiple core learnings. One approach is through mathematical modelling 

involving cycles of model construction, evaluation, and revision, which is fundamental to 

mathematical and scientific understanding and to the professional practice of 

mathematicians and scientists (Lesh & Zawojewski, 2007; Romberg, Carpenter, & Kwako, 

2005). Modelling is not just confined to mathematics and science, however. Other 

disciplines including economics, information systems, social and environmental science, 

and the arts have also contributed in large part to the powerful mathematical models we 

have in place for dealing with a range of complex problems (Lesh & Sriraman, 2005; 

Sriraman & Dahl, in press). Unfortunately, our mathematics curricula do not capitalize on 

the contributions of other disciplines. A more interdisciplinary and unifying model-based 

approach to students’ mathematics learning could go some way towards alleviating the 

well-known “one inch deep and one mile wide” problem in many of our curricula (Sabelli, 

2006, p. 7; Sriraman & Dahl, in press; Sriraman & Steinthorsdottir, in press). There is 

limited research, however, on ways in which we might incorporate other disciplines within 

the mathematics curriculum. 

The study reported here represents one attempt to link children's mathematical learning 

with their learning in other curriculum areas; in the present instance, the focus is on fifth-

grade children's developments in solving a modelling problem situated within the 

curriculum domains of science and studies of society and environment (SOSE). The 

problem was created in collaboration with the classroom teachers to tie in with the 
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children's learning of Australia’s settlement. The problem differed from the children's 

modelling experiences in the previous year of the study in that it comprised mostly 

qualitative, rather than quantitative, data (see Appendix). Hence one of the research goals 

was to explore how the children dealt with data of this nature, for example, whether they 

quantified and/or transformed the data in some way to solve the problem. Another goal was 

to document the developments in the children's mathematical thinking and learning as they 

interacted with the problem and with each other in small-group situations. Given that 

previous research has highlighted the multiple cycles of interpretation that children display 

in solving such problems (Doerr & English, 2003; English, 2006), it was anticipated that 

the children would display a diversity of approaches in solving the problem. Finally of 

interest, were variations in the models the children created with respect to the mathematical 

ideas constructed and the mathematisation processes applied. 

Mathematical Modelling for the Primary School 

Modelling is increasingly recognized as a powerful vehicle not only for promoting 

students’ understanding of a wide range of key mathematical and scientific concepts, but 

also for helping them appreciate the potential of mathematics as a critical tool for analyzing 

important issues in their lives, communities, and society in general (Greer, Verschaffel, & 

Mukhopadhyay, in press; Romberg et al., 2005). Students’ development of powerful 

models should be regarded as among the most significant goals of mathematics education 

(Lesh & Sriraman, 2005). Importantly, modelling needs to be integrated within the primary 

school curriculum and not reserved for the secondary school years and beyond as it has 

been traditionally. Recent research has shown that primary school children are indeed 

capable of developing their own models and sense-making systems for dealing with 

complex problem situations (e.g., English, 2006; English & Watters, 2005). 

The terms, models and modelling, have been used variously in the literature, including 

in reference to solving word problems, conducting mathematical simulations, creating 

representations of problem situations (including constructing explanations of natural 

phenomena), and creating internal, psychological representations while solving a particular 

problem (e.g., Doerr & Tripp, 1999; English & Halford, 1995; Gravemeijer, 1999; Greer, 

1997; Lesh & Doerr, 2003; Romberg et al., 2005). As used in the present study, models are 

“systems of elements, operations, relationships, and rules that can be used to describe, 

explain, or predict the behavior of some other familiar system” (Doerr  &  English, 2003,  

p. 112). From this perspective, modelling problems are realistically complex situations 

where the problem solver engages in mathematical thinking beyond the usual school 

experience and where the products to be generated often include complex artifacts or 

conceptual tools that are needed for some purpose, or to accomplish some goal (Lesh & 

Zawojewski, 2007).   

Mathematical modelling in the primary school presents children with a future-oriented 

approach to learning. The mathematics they experience differs from what is taught 

traditionally in the curriculum for their grade level, because different types of quantities 

and operations are needed to mathematise realistic situations. The types of quantities 

needed in these situations include accumulations, probabilities, frequencies, ranks, and 

vectors, whereas the operations needed include sorting, organizing, selecting, quantifying, 

weighting, and transforming large data sets (Doerr & English, 2003; English, 2006; Lesh, 

Zawojewski, & Carmona, 2003). Modelling problems thus offer richer learning 

experiences than the standard classroom word problems (“concept-then-word problem”, 
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Hamilton, in press). In solving such word problems, children generally engage in a one- or 

two-step process of mapping problem information onto arithmetic quantities and 

operations. In most cases, the problem information has already been carefully 

mathematised for the children. Their goal is to unmask the mathematics by mapping the 

problem information in such a way as to produce an answer using familiar quantities and 

basic operations. These traditional word problems restrict problem-solving contexts to 

those that often artificially house and highlight the relevant concept (Hamilton, in press). 

They thus preclude children from creating their own mathematical constructs.  

In contrast, modelling provides opportunities for children to elicit their own 

mathematics as they work the problem. That is, the problems require children to make 

sense of the situation so that they can mathematize it themselves in ways that are 

meaningful to them. This involves a cyclic process of interpreting the problem information, 

selecting relevant quantities, identifying operations that may lead to new quantities, and 

creating meaningful representations (Lesh & Doerr, 2003). Because children's final 

products embody the factors, relationships, and operations that they considered important 

in creating their model, powerful insights can be gained into the growth of their 

mathematical thinking.  

As previously noted, mathematical modelling provides an ideal vehicle for 

interdisciplinary learning as the problems draw on contexts and data from other domains 

(English, in press). The problem addressed in this paper, The First Fleet, complemented 

the children's study of Australia’s settlement and incorporated ideas from science and the 

SOSE curriculum. Dealing with “experientially real” contexts such as the nature of 

community living, the ecology of the local creek, and the selection of national swimming 

teams provides a platform for the growth of children’s mathematisation skills, thus 

enabling them to use mathematics as a “generative resource” in life beyond the classroom 

(Freudenthal, 1973).  

Finally, modelling problems support recent studies of peer-directed group work (e.g., 

Web, Nemer, & Ing, 2006), which have demonstrated the importance of implementing 

activities that inherently develop students’ discourse in cooperative groups. The problems 

are designed for small-group collaborative work where children are motivated to challenge 

one another’s thinking, and to explain and justify their ideas and actions. 

Design and Methodology 

This study adopted a multilevel collaborative design (English, 2003), which employs 

the structure of the multitiered teaching experiments of Lesh and Kelly (2000). Such a 

design focuses on the developing knowledge of participants at different levels of learning, 

including the classroom teachers whose participation is an essential factor. At the first level 

of collaboration (the focus of this paper), children work in small groups to solve the 

modelling problems. At the second level, their teachers work collaboratively with the 

researchers in preparing and implementing the activities. At the third level, the researchers 

observe, interpret, and document the growth of all participants.  

Participants and Procedures 

Three classes of fourth-grade children (8-9 years) and their teachers took part in the 

first year of this 3-year study; the children participated again in the second year, along with 
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their new classroom teachers. The classes represented the entire cohorts of fourth and fifth 

graders from a private K-12 college situated in a regional Queensland suburb.   

At the beginning of each year, the teachers participated in half-day workshops on 

mathematical modelling and its implementation in the classroom. Meetings during the first 

term of each year were held to plan the three modelling problems to be implemented in the 

year, and, in the case of the first year of the study, some preliminary modelling activities 

(e.g., interpreting and using visual representations; conventionalising representations; 

explaining and justifying mathematical ideas). Each modelling problem was implemented 

in four 50-minute sessions per remaining term. Where possible, the four sessions were 

conducted in the same week so that the children did not lose track of their ideas. Planning 

and debriefing meetings were held with the teachers prior to and following the 

implementation of each problem.  

The present modelling problem, the First Fleet, was implemented at the beginning of 

the second year of the study and comprised several components. First, the children were 

presented with background information on the problem context, namely, the British 

government’s commissioning of 11 ships in May, 1787 to sail to “the land beyond the 

seas”. The children answered a number of “readiness questions” to ensure they had 

understood this background information. After responding to these questions, the children 

were presented with the problem itself, together with a table of data listing 13 key 

environmental elements to be considered in determining the suitability of each of five 

given sites (see Appendix). The children were also provided with a comprehensive list of 

the tools and equipment, plants and seeds, and livestock that were on board the First Fleet. 

The problem text explained that, on his return from Australia to the United Kingdom in 

1770, Captain James Cook reported that Botany Bay had lush pastures and well watered 

and fertile ground suitable for crops and for the grazing of cattle. But when Captain Phillip 

arrived in Botany Bay in January 1788 he thought it was unsuitable for the new settlement. 

Captain Phillip headed north in search of a better place for settlement. The children’s task 

was as follows. 

Where to locate the first settlement was a difficult decision to make for Captain Phillip as there were 

so many factors to consider. If you could turn a time machine back to 1788, how would you advise 

Captain Phillip? Was Botany Bay a poor choice or not? Early settlements occurred in Sydney Cove 

Port Jackson, at Rose Hill along the Parramatta River, on Norfolk Island, Port Hacking, and in 

Botany Bay. Which of these five sites would have been Captain Phillip’s best choice? Your job is to 

create a system or model that could be used to help decide where it was best to anchor their boats 

and settle. Use the data given in the table and the list of provisions on board to determine which 

location was best for settlement. Whilst Captain Phillip was the first commander to settle in 

Australia many more ships were planning to make the journey and settle on the shores of Australia. 

Your system or model should be able to assist future settlers make informed decisions about where 

to locate their townships. 

The children worked the problem in groups of three to four with no direct teaching 

from the teachers or researchers. In the final session, the children presented group reports 

on their models to their peers, who, in turn, asked questions about the models and gave 

constructive feedback.  

 Data Collection and Analysis 

In each classroom, one group of children was video-taped and audio-taped and another 

group was audio-taped in each session, with all data subsequently transcribed. All of the 

children’s group reports to the class and their responses to their peers’ comments were also 
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video-taped and transcribed. Other data sources included classroom field notes and all of 

the children’s artefacts. All of the data were reviewed several times for evidence of: (a) 

children’s initial interpretation and re-interpretations of the problem components; (b) 

cycles of mathematical development as the children created their models, including how 

the children operationalised the given data and ways in which they documented their 

actions; and (c) diversity in their approaches and model creation. This paper addresses the 

cycles of mathematical development displayed by one group of children (Mac’s group) in 

working the problem and then summarises the range of models developed across the three 

classes.  

Results 

 Cycles of Development Displayed by one Group of Children  

Cycle 1: Prioritising and assessing elements. Mac’s group commenced the problem 

with Mac stating, “So, to find out, OK, if we’re going to find the best place I think the most 

important thing would be that people need to stay alive.” The group then proceeded to 

make a prioritised list of the elements that would be most needed. There was substantial 

debate over which elements to select, with fresh water, food (fishing and animals), 

protective bays, and soil and land being chosen. However, the group did not remain with 

this selection and switched to a focus on all 13 elements listed in the table of data. 

The children began to assess the elements for the first couple of sites by placing a tick 

if they considered a site featured the element adequately and a cross otherwise. The group 

then began to aggregrate the number of ticks for each site but subsequently reverted to their 

initial decision to focus just on the most essential elements (“the best living conditions to 

keep the people alive”). Still unable to reach a consensus on this issue, the group continued 

to consider all of the elements for the remaining sites and rated them as “good” and “not so 

good”. The children explained that they were looking for the site that had “the most good 

things and the least bad things”.  

 Cycle 2: Ranking elements across sites. Next, the group attempted a new method: they 

switched to ranking each element, from 1 (“best”) to 5, across the five sites, questioning 

the meaning of some of the terminology in doing so. The children also questioned the 

number of floods listed for each site, querying whether it represented the number of floods 

per year or over several years. As the children were ranking the first few elements, they 

examined the additional sheet of equipment etc. on board the First Fleet to determine if a 

given site could accommodate all of the provisions and whether anything else would be 

needed for the settlement. The group did not proceed with this particular ranking system, 

however, beyond the first few elements. 

Cycle 3: Proposing conditions for settlement and attempting to operationalise data. 

The children next turned to making some tentative recommendations for the best sites, with 

Mac suggesting they create conditions for settlement. 

…like if you had not much food and not as many people you should go to Norfolk Island; if you had 

a lot of people and a lot of food you should go to Sydney Cove or um Rosehill, Parramatta. 
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The group then reverted to their initial assessment of the elements for each site, 

totalling the number of ticks (“good”) and crosses (“bad”) for each site. In doing so, the 

children again proposed suggested conditions for settlement. 

And this one with the zero floods (Norfolk Island), if you don’t have many people that’s a good one 

cause that’s small but because there’s no floods it’s also a very protected area. Obviously, so maybe 

you should just make it (Norfolk Island) the best area. 

The group devoted considerable time to debating conditions for settlement and then 

made tentative suggestions as to how to operationalise the “good” and the “bad”. One child 

suggested finding an average of “good” and “bad” for each site but his thinking here was 

not entirely clear and the group did not take up his suggestion. 

We could find the average, I mean as in like, combine what’s bad, we add them together; we can 

combine how good we think it might be out of 10. Then we um, could divide it by how many good 

things there is [sic] and we could divide it by how many bad things there is [sic]. 

Finding themselves bogged down here, the group turned to a new approach. 

Cycle 4: Weighting elements and aggregating scores. This new cycle saw the 

introduction of a weighting system, with the children assigning 2 points to those elements 

they considered important and 1 point to those elements of lesser importance (“We’ve 

valued them into points of 1 and 2 depending on how important they are”). Each site was 

then awarded the relevant points for each element if the group considered the site displayed 

the element; if the site did not display the element, the relevant number of points was 

subtracted. As the group explained, 

The ones (elements) that are more important are worth 2 points and the ones that aren’t are 1. So if 

they (a given site) have it you add 2 or 1, depending on how important it is, or you subtract 2 or 1, if 

they don’t have it.  

The children totalled the scores mentally and documented their results as follows (1 

refers to Botany Bay, 2 to Port Jackson, and so on): 
1   -12 + 10 = -2 

2   - 9 + 13 = 4 

3   - 5 + 17 = 12 

4   - 7 + 15 = 8 

5   - 9 + 13 = 4 

Cycle 5: Reviewing methods and finalising site selection. The group commenced the 

third session the next morning by reflecting on the two main methods they had employed to 

determine the best site, namely, the use of ticks (“good”) and crosses (“bad”) in assessing 

elements for each site and trying to operationalise these data, and the weighting of elements 

and aggregating of scores. Mac commenced by reminding his group of what they had found 

to date. 

Yesterday we, um, OK, the first thing we did yesterday showed us that the fifth one (Norfolk Island) 

was the best place, second one (weighting of elements) we did told us … showed us that number 

three (Rosehill, Parramatta) was the best. So it’s a tie between number three and number five. So it’s 

limited down to them, work it out. Hey guys, are you even listening?  

After bringing the group back on task, Mac stated, “OK, we’re doing a tie-breaker for 

number three and number five.” The group proceeded to revisit their first method, 

assigning each tick one point and ignoring the crosses. However, on totalling the points, 

Mac claimed that Rosehill, Parramatta, was the winning site. Bill expressed concern over 

the site’s record of 40 floods and this resulted in subsequent discussion as to whether 
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Parramatta should be the favoured site. The children finally decided on Norfolk Island 

because it was flood-free and because it was their choice using their first main method. 

Diversity of Models Created Across all Groups 

The children's models varied in mathematical sophistication, from limited use of 

mathematisation processes through to various scoring and ranking systems that included 

the use of weighted scores as above. Other models across the classes included the 

following. 

Model 1. This was the most common model that was generated across the classes. It 

entailed taking each site in turn and assessing whether it adequately displayed all or a 

selection of the elements. Children used ticks, crosses, and highlighting on the given table 

of data and took a subsequent tally of each site. The site with the highest tally was selected 

as the place for settlement. As one group explained, “We’re just highlighting the best and 

then we’re going to see how many highlighted ones there are (for each site).” Another 

group explained, “The least bad and the highest good is the best.”  

Model 2. Here, children selected and prioritized elements to consider for each site (“We 

chose six things that we thought were important and made a graph”). The children in one 

group ranked “accessible by sea” as no. 1, “fresh water” as no. 2, “soil quality” as no. 3, 

“bush tucker” as no. 4, “land available” as no. 5, and “land suitable for livestock” as no. 6. 

Each site was then assessed in terms of these elements. The site that displayed the most 

favoured of these elements was chosen (the site that had the “best out of these categories”). 

Model 3. The third model was an advance on the previous models. Children rated 

selected elements (accessible by sea, fresh water, soil quality, trees and plants, and local 

bush tucker) for each site as “very good”, “good”, “OK”, and “bad”. The number of times 

each category appeared for each site was tallied and the site that had the highest tally for 

the “very good” category was chosen. 

Model 4. This model extended model 3. Each of the 13 elements was ranked in turn 

from 1 to 5 across the five sites (1 = best). The site with the highest number of ranks of one 

was chosen as the most suitable site. 

Model 5. The fifth model extended the previous two models by awarding 3 ticks for 

“very good”, 2 ticks for “good”, 1 tick for “average”, and a cross for “bad”. The site with 

the highest number of ticks was the chosen site. On totalling the number of ticks, one group 

claimed the score was “out of 13”.   

Model 6. This model incorporated a scoring system where each element for each site 

was assessed and given a score out of 10 or out of 13. The group that used the 10-point 

system reported to the class as follows. 

Our strategy was using a point score. We did a rating out of 10 for the data headlines, in the 

importance of, like 10 out of 10. And down the scale we went. We then rated the answers, like 

accessible by sea, we rated like, accessible by sea, we rated 9 out of 10 for importance. The answer 

going down the column would only go up to the highest of 9, because it was 9 out of 10. We did this 

for the whole graph (table), then for the 5 places here we added up the total scores. We ended up 

with 39 for Botany Bay, 62 for Sydney Cove, Port Jackson, 77 for Rosehill, Parramatta, 66 for Port 

Hacking and 70 for Norfolk Island. We chose the highest rating; it was Rosehill.  
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Discussion and Concluding Points 

This study represents one approach to introducing interdisciplinary modelling problems 

into the primary mathematics curriculum. Mathematical modelling has traditionally been 

confined to the secondary school and beyond, yet this study and other research have shown 

that such problems contribute effectively to primary school children’s learning in several 

domains. Such problems allow for a diversity of solution approaches and enable children of 

all achievement levels to participate in, and benefit from, these experiences. In contrast to 

traditional classroom problem solving, these modelling problems facilitate different 

trajectories of learning, with children's mathematical understandings developing along 

multiple pathways. Importantly, children direct their own mathematical learning. That is, 

they elicit key ideas and processes from the problem as they work towards model 

construction. In the present case, the children identified and prioritized key problem 

elements, explored relationships between elements, quantified qualitative data, ranked and 

aggregated data, and created and worked with weighted scores—before being formally 

introduced to mathematisation processes of this nature.  

Modelling problems engage children in multiple cycles of interpretations and 

approaches, suggesting that real-world, complex problem solving goes beyond a single 

mapping from givens to goals. Rather, such problem solving involves multiple cycles of 

interpretation and re-interpretation where conceptual tools evolve to become increasingly 

powerful in describing, explaining, and making decisions about the phenomena in question 

(Doerr & English, 2003). Furthermore, these phenomena can be drawn from a wide range 

of disciplines.  

The interdisciplinary nature of mathematical modelling means that we can create 

problems that can help unify some of the myriad core ideas within the primary curriculum. 

For example, problems that incorporate key concepts from science (English, in press) and 

SOSE can help children appreciate the dynamic nature of environments and how living and 

non-living components interact, the ways in which living organisms depend on others and 

the environment for survival, and how the activities of people can change the balance of 

nature. The First Fleet problem can also lead nicely into a more in-depth study of the 

interrelationship between ecological systems and economies, and a consideration of ways 

to promote and attain ecologically sustainable development. 

Finally, the inherent requirement that children communicate and share their 

mathematical ideas and understandings, both within a small-group setting and in a whole-

class context, further promotes the development of interdisciplinary learning. The problems 

engage children in describing, explaining, debating, justifying, predicting, listening 

critically, and questioning constructively—which are essential to all discipline areas.  
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